Spot Welding Machine
now browsing by category
Spot Welding Machine
Spot Welding Process
All resistance welding operations are automatic and therefore all process variables are pre-set and maintained constant. Once a welding operation has been initiated there is no way in which its progress can be controlled and, thus, the weld cycle is completed as per the pre-set times.
Welding Cycle
The welding cycle for spot welding machine, seam welding machine and projection welding machine consist basically of four elements viz., squeeze time, weld time, hold time, and off time. These timing are pre-set for a particular metal and a thickness range and the shop operator normally cannot change them on his own. Each one of these four time phases has its own role to play in achieving a sound weld of the required size.
Squeeze Time
The time interval between the application of electrode pressure to the work and switching on the welding currents called the squeeze time. This time interval is provided to assure the contact between the electrode and the work and to initiate the application of force on it.
Weld Time
It is the time for which the welding current actually flows to melt the metal at the interface.
Hold Time
It is the time for which the electrodes are kept in position, after the welding current is switched off, to assure the application of pressure so as to consolidate the molten metal into a nugget which is then cooled by the dissipation of heat to the surrounding work material. If the applied force is excessive it may result in expulsion of molten metal from in-between the sheets.
Off Time
The time allowed to shift the work to the next location before the cycle is repeated is referred to as the off time. The electrodes are kept off the work during this time interval.
Welding Variables
Welding current, time of current flow and the electrode pressure are recognized as the fundamental variables of resistance spot welding machine. For achieving quality welds in most metals, these variables are required to be kept within very close limit.
Welding Current
The size of the weld nugget and in fact whether it will form or not depends upon the heat being generated faster than it is dissipated by conduction. Welding current is, thus , the most critical variable.
Both a.c. and d.c. are used to produce spot, seam, and projection welding machine. Most applications use single phase a.c. of mains frequency i.e. 50 hertz. However, d.c. is used for applications that need heavy current and the load for which can be balanced on a 3-phase power line. Also, with direct current machines the rate of current rise and fall can be programmed as per requirements. The current rise period or upslope and current decay period or down slope can be programmed with electronic control systems.
Control of upslope helps to avoid overheating and expulsion of molten metal at the beginning of the weld time as the interface resistance at that time is high. Down slope helps to control weld nugget solidification to avoid cracks in weldments particularly in metals that are prone to quench-hardening and hot tearing.